Nonnative Interactions in Coupled Folding and Binding Processes of Intrinsically Disordered Proteins
نویسندگان
چکیده
Proteins function by interacting with other molecules, where both native and nonnative interactions play important roles. Native interactions contribute to the stability and specificity of a complex, whereas nonnative interactions mainly perturb the binding kinetics. For intrinsically disordered proteins (IDPs), which do not adopt rigid structures when being free in solution, the role of nonnative interactions may be more prominent in binding processes due to their high flexibilities. In this work, we investigated the effect of nonnative hydrophobic interactions on the coupled folding and binding processes of IDPs and its interplay with chain flexibility by conducting molecular dynamics simulations. Our results showed that the free-energy profiles became rugged, and intermediate states occurred when nonnative hydrophobic interactions were introduced. The binding rate was initially accelerated and subsequently dramatically decreased as the strength of the nonnative hydrophobic interactions increased. Both thermodynamic and kinetic analysis showed that disordered systems were more readily affected by nonnative interactions than ordered systems. Furthermore, it was demonstrated that the kinetic advantage of IDPs ("fly-casting" mechanism) was enhanced by nonnative hydrophobic interactions. The relationship between chain flexibility and protein aggregation is also discussed.
منابع مشابه
Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding.
The diverse biological functions of intrinsically disordered proteins (IDPs) have markedly raised our appreciation of protein conformational versatility, whereas the existence of energetically favorable yet functional detrimental nonnative interactions underscores the physical limitations of evolutionary optimization. Here we survey recent advances in using biophysical modeling to gain insight ...
متن کاملContribution of protein phosphorylation to binding-induced folding of the SLBP–histone mRNA complex probed by phosphorus-31 NMR
Phosphorus-31 ((31)P) NMR can be used to characterize the structure and dynamics of phosphorylated proteins. Here, I use (31)P NMR to report on the chemical nature of a phosphothreonine that lies in the RNA binding domain of SLBP (stem-loop binding protein). SLBP is an intrinsically disordered protein and phosphorylation at this threonine promotes the assembly of the SLBP-RNA complex. The data ...
متن کاملEnergetically significant networks of coupled interactions within an unfolded protein.
Unfolded and partially unfolded proteins participate in a wide range of biological processes from pathological aggregation to the regulation of normal cellular activity. Unfolded states can be populated under strongly denaturing conditions, but the ensemble which is relevant for folding, stability, and aggregation is that populated under physiological conditions. Characterization of nonnative s...
متن کاملBinding of Two Intrinsically Disordered Peptides to a Multi-Specific Protein: A Combined Monte Carlo and Molecular Dynamics Study
The unique ability of intrinsically disordered proteins (IDPs) to fold upon binding to partner molecules makes them functionally well-suited for cellular communication networks. For example, the folding-binding of different IDP sequences onto the same surface of an ordered protein provides a mechanism for signaling in a many-to-one manner. Here, we study the molecular details of this signaling ...
متن کاملThe transition state structure for coupled binding and folding of disordered protein domains
Intrinsically disordered proteins are abundant in the eukaryotic proteome, and they are implicated in a range of different diseases. However, there is a paucity of experimental data on molecular details of the coupled binding and folding of such proteins. Two interacting and relatively well studied disordered protein domains are the activation domain from the p160 transcriptional co-activator A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010